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 Abstract

DNA repair is a critical factor in tumor progression since it influences tumor mutational burden, genome 
stability, PD-L1 expression, tumor-infiltrating lymphocytes (TILs) and immunotherapy response. In this 
study, we constructed a prognostic model for hepatocellular carcinoma (HCC) based on DNA damage res-
ponse (DDR)-related genes. The patients were stratified on the basis of the risk score, and the low-risk 
group showed better survival rates compared to the high-risk counterparts. The risk model showed good 
predictive accuracy for 1-, 3- and 5-year survival as per receiver operator curve analysis (ROC). In addi-
tion, the risk model was verified as an independent prognostic factor of HCC along with tumor stage. We 
further constructed a nomogram based on the independent factors for predicting overall survival. Gene set 
enrichment analysis (GSEA) demonstrated that cell cycle, apoptosis, MAPK, mTOR and the WNT cascades 
were enriched in the high-risk group. Two potential molecular subtypes of HCC were identified based on 
the expression of DDR genes in the training and validation datasets. The two subtypes differed in terms 
of immune cell infiltration and expression of immune checkpoint receptors. Taken together, we identified 
potential biomarkers of HCC prognosis that may provide novel insights into the molecular mechanisms 
underlying HCC based on cell assays.
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Introduction

	 According to the 2018 global cancer statistics, hepatocellular carcinoma (HCC) is the sixth most 
common malignancy and the fourth leading cause of cancer-related mortality [1,2]. Despite recent ad-
vances in HCC treatment, the outcomes are far from satisfactory [3,4]. Therefore, there is an urgent need to 
identify novel therapeutic targets and diagnostic biomarkers of HCC in order to improve patient prognosis.
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Given that DNA damage is a hallmark of cancer cells, the pathways involved in DNA damage and repair are 
repositories of novel therapeutic targets [5]. Studies show that genes involved in DNA damage response 
(DDR) pathways such as base excision repair, mismatch repair and nucleotide excision repair [6] are 
aberrantly expressed during cancer development and progression [7-10]. Dysregulated DDR is associated 
with increased genome instability in HCC cells [11] and is therefore prognostically significant. 

	 In recent years, with the rise of high-throughput sequencing technology, sequencing data and 
clinical follow-up information in many cancer databases can be downloaded by us. We therefore attempted 
to download the hepatocyte dataset from TCGA and GEO databases. At present, many studies have used 
prognostic model methods to predict the overall survival rate of patients, and compared with clinical 
indicators such as clinical stage and pathological stage, it has shown excellent superiority.

	 In this study, we examined the prognostic potential of DDR-linked genes in HCC and developed a 
risk model. To this end, 150 DDR-related genes were identified from the MSigDB database, and an 11-gene 
HCC prognostic signature was constructed following univariate cox regression and random forest analyses. 
The robustness of the model was ascertained by internal and external validation. The potential pathways in 
HCC associated with the risk model were also identified by GSEA, and the correlation between clinical traits 
and the risk score was analyzed. Finally, we identified and validated two molecular subtypes of HCC based 
on DDR gene expression. Taken together, our findings provide novel insights into the molecular mechanism 
of HCC and establish an independent DDR gene-based prognostic signature. 

Methods

	 Data collection: Gene expression and clinical data of HCC samples were obtained from TCGA-LIHC 
(https://portal.gdc.cancer.gov/) and ICGC-LIRI (https://dcc.icgc.org/) datasets. DDR-linked genes were 
retrieved from MSigDB, V7.1 (https://www.gsea-msigdb.org/gsea/msigdb), and those present in both 
datasets were retained.

	 Risk signature construction: The prognostic DDR-linked genes were identified in the LIHC and 
LIRI-JP datasets through univariate and multivariate Cox regression analyses. The risk score was calculated 
for each patient in both datasets as follows: Risk score = (Exp i * β i), where Expi is the expression level of 
prognostic genes and β i is the cox regression coefficient for each prognostic gene. The patients were classified 
into high- and low-risk groups according to the median risk score. The “survival” R package and “survminer” 
package were used to examine survival differences between the high- and low-risk groups. The predictive 
accuracy of the risk model for 1-, 3- and 45-year survival was evaluated using the “survivalROC” package 
in R (https://cran.r-project.org/web/packages/survivalROC/index.html). Prognostic independence of 
the gene risk score and clinical features was determined by univariate and multivariate cox regression 
analyses. Pathways potentially linked to the high- and low-risk groups were identified using GSEA, with 
c2.cgp.v7.1.symbols.gmt selected as reference gene set. 

	 Nomogram and DCA curve construction: A nomogram was developed based on all independent 
prognostic factors. The discriminative ability of the nomogram was assessed through a calibration plot 
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using the bootstrap approach with 1,000 replications [12]. Decision curve analysis was performed to 
determine the benefit of the prognostic factor [13].

	 Consensus clustering: To determine the potential molecular subtypes of HCC based on the DDR-
related genes, the patients were grouped into diverse clusters using “ConsensusClusterPlus” R package (50 
iterations, 80% resampling samples) [14]. Principal Components Analysis (PCA) was used to distinguish 
various LIHC subgroups and all analyses were validated on the LIRI-JP dataset. 

	 Immune infiltration analysis: The ssGSEA algorithm in “GSVA” R package was used to assess the 
infiltration levels of 28 immune cells in the high- and low-risk groups, and the enrich score of the immune 
cells in each sample were calculated [15-17]. The expression of immune checkpoint genes in both groups 
was also analyzed.

	 Cell culture and transfection: Human HCC cell lines Hep G2 and MHCC-97H were purchased from 
(National collection of authenticated cell culture, Shanghai, CN), and incubated at 37oC with 5% CO2 in 
a humidity saturated environment. Cells were cultured in DMED (Hyclone, LA, USA) and supplied with 
10% fetal bovine serum (BI, Israel), anti biotics (0.1 U/l penicillin and 100 g/l streptomycin). DGUOK 
siRNA were obtained from RiboBio Co., Ltd. (Guangzhou, China). The siRNA was dissolved in DEPC-treated 
water. Lipofectamine 2000 reagent (Invitrogen, CA, USA) were used for transfection according to the 
manufacturer’s protocol. The solutions were mixed together and incubated at room temperature for 30 
minutes. 30 nM siRNA was added into each well and incubated at 37℃.

	 Hoechst staining: Cell apoptosis was observed by the morphological changes of the cell nucleus 
(chromatin agglutination or DNA fragmentation). Cells were treated with si-NC or si-DGUOK, and washed 
with PBS twice, Hoechst 33258 (1 μg/ml) was added for 20 min at room temperature avoiding light. Images 
were gathered by fluorescence microscope (Nikon, Japan).

	 Cell viability assays: Cells were seeded in 96-well plates at 10,000 cells per well, and cultured for 
24 h. They were treated with si-NC or si-DGUOK. Then CCK-8 were added to each plate, absorbance was 
measured at 450 nm using a FLUOstar Omega microplate reader (BMG Labtech). Cell viability of samples 
was calculated according to the manufacturer’s instructions.

	 Statistical analyses: Statistical analyses were conducted using R (https://www.r-project.org/). 
Survival analysis was performed using the Kaplan-Meier (KM) method. P<0.05 was considered statistically 
significant.

Results

	 Identification of survival-related DDR risk model: The expression data of 150 DDR-related 
genes was downloaded from TGCA dataset consisting of 343 HCC samples. Univariate cox regression 
analysis identified 37 prognostic genes associated with the survival of HCC patients. Following stepwise 
multivariate cox regression analysis, 11 genes including AAAS, CANT1, CLP1, DGUOK, GTF2B, GTF2H1, 
NCBP2, POLA1, POLE4, POLR2D and POLR2E were retrieved, and used to develop a risk model. The risk 



Page 4

Vol 9: Issue 07: 1991
score for each patient was computed as follows: AAAS * -0.022 + CANT1 * -0.016 + CLP1 * -0.098 + DGUOK 
* -0.016 + GTF2B*0.018 + GTF2H1 * 0.034 + NCBP2 * 0.042 + POLA1 * 0.089 + POLE4 * 0.015 + POLR2D * 
0.047 + POLR2E * 0.007. On the basis of the median risk score, the patients were classified into the high- 
and low-risk groups. As shown in Figure 1A, patients in the low-risk group experienced longer survival 
relative to those in the high-risk group. Furthermore, KM analysis confirmed better prognosis of the low-
risk group relative to that of the high-risk group (p value <0.001) (Figure 1B). ROC analysis was performed 
to determine the predictive performance of the risk model. The area under curve (AUC) values for 1- and 
3-year survival were 0.76 and 0.66 respectively (Figure 1C), indicating good accuracy.

Figure 1: Survival analysis of DDR genes in TCGA dataset. 
(A) Risk score plot for the DDR signature. Upper panel 
shows risk score distribution, middle panel shows case dis-
tribution, and the lower panel indicates the expression level 
of the 11 DDR genes. (B) KM survival curves of the high-and 
low-risk groups. (C) ROC curve analysis of the risk gene si-
gnature.

	 External validation of the DDR-gene prognostic signature: To assess the reliability and robustness 
of the 11-gene signature, we downloaded a dataset of 231 HCC samples from ICGC (https://dcc.icgc.org/). 
The risk scores were calculated for each patient, and the cohort was stratified into high- or low-risk groups. 
Consistent with the findings above, most surviving cases were classified into the low-risk group, whereas 
the high-risk group had a higher mortality rate (Figure 2A). KM analysis revealed that the low-risk group 
patients had better overall survival relative to their high-risk counterparts (Figure 2B). The AUC values for 
1- and 3-year survival were 0.73 and 0.77 respectively, suggesting good prognostic performance of the risk 
model in HCC (Figure 2C).

	 The risk model is an independent prognostic predictor of HCC: Univariate and multivariate 
cox regression analyses showed that the risk model and tumor stage were independent risk factors for 
HCC (Figure 3A-B). In addition, ROC assessment showed that the risk model outperformed tumor stage in 
predicting 1-year prognosis (AUC 0.746 VS 0.700) (Figure 4A). We then constructed a nomogram to predict 
overall survival (OS) at 1-, 3- and 5-years based on the risk model and tumor stage (Figure 5A). As shown in 
Figure 4B-D, the AUC value of the nomogram indicated good prognostic performance at 1-, 3- and 5-years. 
Furthermore, calibration curve plots validated the stability of the nomogram (Figure 5B-D). Taken together, 
the nomogram consisting of DDR gene-based risk score and tumor stage can robustly predict the prognosis 
of HCC patients, and therefore can aid in clinical decision-making.

Figure 2: Survival analysis of DDR genes in ICGC dataset. 
(A) Risk score plot for the DDR signature. Upper panel 
shows risk score distribution. Middle panel shows case dis-
tribution. Lower panel shows the expression level of the 11 
DDR genes. (B) KM survival curves of high- and low-risk 
groups. (C) ROC curve analysis for the risk gene signature.
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Figure 3: (A) Univariate and (B) multivariate cox regression 
analyses demonstrating the prognostic value of the gene biosi-
gnature and clinical traits.

Figure 4: ROC curve analysis of the nomogram, gene signature and disease stage for 1- (A), 3- (B), 
and 5-year (C) survival.

Figure 5: Construction and validation of a prognostic no-
mogram. (A) A nomogram was developed based on the 
risk model and tumor stage to estimate overall survival of 
HCC patients. Calibration curve plot of the nomogram for 
estimating 1- (B), 3- (C) and 5-year (D) survival of HCC 
patients. 

	 Gene Set Enrichment Analysis (GSEA): GSEA was performed for the high-risk and low-risk groups 
to identify pathways that are significantly enriched in HCC. Pathways related to apoptosis, cell cycle, and 
MAPK, mTOR, NOCTH, UBIQUITIN and WNT signaling were enriched in the high-risk group, whereas the 
low-risk group showed significant enrichment of fatty acid metabolism and retinol metabolism pathways 
(Figure 6A-B). Thus, the low-risk score and favorable prognosis are correlated with metabolism-linked 
cascades, whereas cancer-related pathways coincide with poor prognosis and high-risk score.
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Figure 6: Gene set enrichment analysis results showing enriched pathways in (A) high-risk and (B) low-
risk groups.

	 Identification of molecular subtypes of HCC: The consensus clustering algorithm was used to 
identify molecular subtypes of HCC on the basis of the DDR genes. Based on the cumulative distribution 
function curve and the consensus heatmap, we set K = 2 as the optimal cluster (Figure 7A-C). PCA further 
demarcated the patients into two distinct subgroups (Figure 7D), and the overall survival in subgroup 1 
was better than in subgroup 2 (Figure 7E). In addition, we validated the subgroups in the ICGC dataset, 
which confirmed the robustness of the classification (Figure 8). The correlation between the subgroups 
and the clinical characteristics in TCGA and ICGC datasets revealed that the group with better survival 
outcomes included more early-stage cases (Figure 9A-B).

	 Correlation of the immune infiltration with HCC subclasses: The ssGSEA algorithm were used 
to analyze the infiltration of 28 immune cells in the high- and low-risk groups. The infiltration levels of 
activated CD4+ T cells, central memory CD4+ T cells, central memory CD8+ T cells, effector memory CD4+ 
T cells, memory B cells, regulatory T cells, T follicular helper cells, Th17 cells, Th2 cells, activated CD8+ T 
cells, immature dendritic cells (DCs) and plasmacytoid DCs were significantly higher in the high-risk group, 
whereas the low-risk group had greater infiltration of activated CD8+ T cells and eosinophils (Figure 10A). 
In addition, the expression levels of all inhibitory immune receptors were higher in the high-risk group 
compared to that in the low-risk group (Figure 10B), indicating that the anti-tumor effect of high T cell 
infiltration was offset by a strong immunosuppressive tumor microenvironment due to overexpression of 
immune checkpoint proteins [18].

	 Cell assays: In vitro validation on DGUOK. HepG2 and MHCC-97H cells were treated with CCK8 
and were performed to detect the cell viability. Hoechst 33258 fluorescent dye staining was used to show 
nuclear morphological changes and to assess apoptosis. Data in A are presented as means ± SD. **, p< 0.01. 
magnification: 200×.



Page 7

Vol 9: Issue 07: 1991

Figure 7: Consensus clustering for DDR genes in HCC patients from TCGA dataset. (A) The 
cumulative distribution function (CDF) curve plot when k = 2 to k = 9 (B). The relative 
change in area under CDF curve when k = 2 to k = 9. (C) Consensus heatmap when k =2. (D) 
Principal components analysis for the DDR gene expression. (E) KM survival curve analysis 
for the 2 subgroups.

Figure 8: Consensus clustering for DDR genes in HCC patients from the ICGC cohort. (A) The 
cumulative distribution function (CDF) curve plot when k = 2 to k = 9 (B). The relative change 
in area under CDF curve when k = 2 to k = 9. (C) Consensus heatmap when k =2. (D) Principal 
components analysis for the DDR gene expression. (E) KM survival curve analysis for the 2 
subgroups.
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Figure 9: Heatmap analysis of the relationship between subgroup and clinical traits in 
(A) TCGA and (B) ICGC cohorts.

Figure 10: Immune infiltration. (A) The abundance of 
tumor infiltrating immune cells in high- and low-risk 
groups. (B) Boxplot showing the expression of immune-
checkpoint genes in high- and low-risk groups.

Figure 11: In vitro validation on DGUOK. HepG2 and MHCC-
97H cells were treated with siDGUOK for indicated time. A: 
CCK8 was performed to detect the cell viability. B: Hoechst 
33258 fluorescent dye staining was used to show nuclear 
morphological changes and to assess apoptosis. Data in A are 
presented as means ± SD. **, p< 0.01. magnification: 200×.
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Discussion     

	 HCC is a highly heterogeneous cancer with multiple risk factors such as hepatitis B/C, alcoholic 
liver disease, obesity etc. [19]. DNA damage and chromosomal aberrations are the initiating events of ma-
lignant transformation, and triggers a DNA damage response (DDR) in the affected cells. DNA lesions can 
be repaired through homologous recombination, mismatch repair, double strand break repair and other 
mechanisms. A dysfunctional DDR destroys genomic integrity and results in mutations, which eventually 
trigger carcinogenesis and promote tumor progression [20]. Studies show that DNA repair proteins such 
as sphingolipid signaling, hOGG1, XRCC1, TP53, PARP-1, MRE11-Rad50-NBS1 (MRN) complex and Ataxia 
Telangiectasia Mutant (ATM) kinase are frequently mutated in HCC [21]. In addition, the DDR pathway in-
duced by ionizing radiation (IR) creates an immunosuppressive tumor microenvironment, which weakens 
the anti-tumor effect of radioimmunotherapy. DDR inhibitors can reverse the immunosuppressive state of 
HCC and inhibit tumor progression [22].

	 There is considerable evidence indicating that DDR genes directly influence tumorigenesis [23]. 
DDR genes are often aberrantly expressed in the tumor tissues or mucosa, and is closely associated with 
patient prognosis [24,25]. However, the prognostic value of individual genes is limited [26,27], and multi-
gene signatures may be better suited for predicting HCC prognosis. However, no study so far has reported 
the prognostic value of DDR genes in HCC. We constructed a 11-DDR gene signature for predicting the pro-
gnosis of HCC patients using DDR gene expression data and clinical data from TCGA and ICGC databases. 
The risk score of the 11-gene signature demarcated the patients into the high- and low-risk groups, and the 
former was associated with worse survival outcomes. The risk model showed good predictive performance 
in both TCGA and ICGC datasets.  In addition, the risk model was also identified as an independent prognos-
tic factor of HCC. A nomogram constructed using the risk score and tumor stage clearly discriminated two 
prognostic groups, and may be useful in guiding preoperative management of HCC patients. 

	 GSEA further revealed that the DDR gene signature was associated with cancer-related pathways 
including cell cycle, WNT signaling, mTOR signaling and apoptosis in the high-risk group, and are indica-
tive of the potential mechanisms underlying HCC progression. The low-risk group on the other hand was 
enriched in metabolism-related pathways. Most of the genes in the DDR-based risk signature have an esta-
blished role in tumorigenesis. CANT1 regulates pyrimidine metabolism in melanoma cells and is associa-
ted with tumor progression [28]. High CANT1 expression in prostate cancer cells is associated with better 
prognosis, and CANT1 silencing significantly suppressed cell proliferation and DNA synthesis [29]. CLP1, 
the first mammalian RNA kinase to be identified, plays an important role in motor neuron function [30]. 
Mitochondrial deoxyguanosine kinase (DGUOK) is the rate-limiting enzyme in the mitochondrial deoxynu-
cleoside salvage pathway. Overexpression of DGUOK is associated with worse lung cancer prognosis, and 
its depletion suppressed lung adenocarcinoma growth, metastasis and CSC self-renewal [31]. GTF2B is a 
prognostic marker in neuroblastoma and colorectal cancer, whereas GTF2H1 is a p62 subunit of the multi-
protein complex transcription factor IIH (TFIIH) and regulates nucleotide excision repair and transcription 
[32,33]. Some polymorphisms/haplotypes of GTF2H1 are associated with increased susceptibility to lung 
cancer [34]. Budding yeast orthologs of POLE4 enhance Polε processivity in vitro but are dispensable for 
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viability in vivo and lead to accelerated tumorigenesis [35]. Moreover, the POLR2E rs3787016 polymor-
phism may increase the risk of papillary thyroid carcinoma, prostate cancer, esophageal cancer, liver cancer 
and breast cancer [36-38]. However, the role of AAAS, NCBP2, POLA1 and POLR2D in HCC is unknown, and 
will have to be experimentally verified.

	 Immunotherapy has achieved encouraging results in various malignancies [39]. For instance, the 
“T+A” scheme is increasingly becoming the first-line option for advanced HCC [40]. Despite achieving good 
outcomes in multiple cancers, a significant percentage of the patients do not benefit from immunotherapy. 
Therefore, it is necessary to identify biomarkers that can predict the outcomes of immunotherapy, and 
screen for patients that can respond to immunotherapeutic regimens. Galon et al. [41] had proposed the 
concept of “cold” and “hot” tumors to evaluate their sensitivity to immunotherapies. In this study, we de-
tected high infiltration of immunosuppressive cells and overexpression of immune checkpoint receptors in 
the high-risk group, which indicates that these patients are likely unresponsive to immunotherapy. 

Conclusion

	 In conclusion, we developed an 11-DDR gene signature for predicting HCC prognosis. This prognos-
tic signature can improve our understanding of the molecular mechanisms underlying HCC progression 
and guide clinical decision-making.
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