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 Abstract

Computerized Tomography (CT) has become one of the most important lung disease diagnosis techniques. 
In order to visualize and quantitatively analyze 3D lung tissues from sparse thoracic CT slices, we present 
a novel 3D lung reconstruction algorithm based on a point cloud processing technology, which contains 
two principal stages: lung segmentation and lung reconstruction. In the first stage, we fist segment lung 
CT images into a set of superpixels, and classify the superpixels using a random forest approach based on 
multi-scale features learned by a Convolutional Neural Network-Sparse Auto-Encoder (CNN-SAE) model. 
We then extract lungs from the classification result and further refine the segmented lungs with a set of 
post-processing techniques. In the second stage, we capture lung contours between adjacent lung seg-
mentations from sparse slices with a gradient vector flow field snake model to construct 3D point cloud of 
lungs, and we finally constructed the 3D lungs with a floating scale surface reconstruction approach. Se-
veral experiments are conducted to test the performance of our algorithm, and the results shown that our 
algorithm can reconstruct lungs well from sparse lung CT slices, which can provide reliable information for 
effective observation and diagnosis of lung diseases.
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Introduction

	 In many medical scientific and technical activities, Three-Dimensional (3D) organ models need to 
be reconstructed from serial two-dimensional (2D) medical slices, which is helpful for comprehending the 
structure of the organ and facilitating its automatic manipulation and analysis [1,2]. In recent years, 3D 
reconstruction of medical images has been widely used in medical teaching, human simulation, prosthetic 
and plastic surgery, virtual surgery, radiotherapy planning and so on.
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3D reconstruction methods can be divided into two classes: surface rendering and volume rendering 
[3]. Surface rendering synthesizes surfaces by extracting points with the same gray value and building 
geometries including triangles, polygons, etc. Volume rendering projects a 3D data field onto 2D screen 
and synthesizes the model by calculating the values of pixels of the 2D projection image. Many researchers 
have proposed various 3D reconstruction algorithms of medical images. Yasaka et al. [4] reconstructed 
high-resolution computed tomography images using model-based iterative reconstruction and spatial 
resolution preference algorithm (MBIRn), conventional model-based iterative reconstruction and adaptive 
statistical iterative reconstruction for evaluating lung nodules, respectively. Xiao et al. [5] reconstructed 
a 3D model of lungs through several orthogonal scans using a compression sensing technique. Aiming to 
construct 3D surfaces from contours of axial slices, Mukundan et al. [6] proposed an algorithm for automatic 
segmentation of large volume sets and a contour-based construction of a 3D mesh representation. Hu et 
al. [7] proposed an improved marching cubes algorithm based on a universal tree structure and a contour 
points method for the 3D reconstruction of abdominal organ CT images. Zhang et al. [8] proposed a medical 
CT image reconstruction method with limited angle projection for incomplete scanning data set, which 
can satisfy the completeness condition of projection data. Guo et al. [9] implemented interpolation in 
3D medical image reconstruction by a combined operation of weighted dilation and erosion. Zhu et al. 
[10] presented a brain reconstruction approach from magnetic resonance imaging (MRI) images based 
on domain-transform manifold learning. Huang et al. [11] proposed an algorithm for magnetic resonance 
(MR) image reconstruction, which minimized a linear combination of three terms corresponding to a least-
squares data fitting, total variation (TV) and L1 norm regularization.

	 Active contour model has been widely used for capturing accurate contours of organs from medical 
images. Kim et al. [12] proposed a deformable model-based approach for vessel boundary detection and 
3D reconstruction, where contours of vessels were obtained by Gradient Vector Field (GVF) Snake model 
[13] and then a 3D structure was reconstructed with the coordinates of the Snakes. In [14], edges were 
extracted using a multi-scale wavelet transform and refined with GVF Snake model. Then, combined with 
the shortest diagonal line method and the adjacent contours synchronous marching algorithm, a 3D surface 
reconstruction algorithm was proposed to reconstruct organ model from medical images. In order to 
capture accurate contours of organs from medical images for 3D reconstruction, Zhao et al. [15] proposed 
an improved watershed algorithm, which grew an organ in a CT image from a seed block by the principle of 
the similarity between grayscale and texture. Then they used the edge captured by the watershed algorithm 
as a start contour of the adjacent CT sequence, and segmented the organ from a sequence of images with 
GVF algorithm. Li et al. [16] presented a slice image-based 3D model reconstruction method. They extracted 
object outermost contours from slice images employing an improved GVF Snake model with an optimized 
force field and the ray method. And then they reconstructed a 3D model by contour connection using an 
improved shortest diagonal method and judgment function of contour fracture.

	 CT uses the X-ray, -ray, ultrasonic, and so on, together with a very sensitive detector around a thoracic 
part of the body one after another for cross-sectional scanning, and each of scanning forms a 2D lung image 
layer (slice). The main tasks in 3D reconstruction process of lung CT medical images usually include regions 
of interest (ROI) extraction from all the 2D layers and surfaces or volumes reconstruction of ROIs [17]. 
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Although many available 3D reconstruction methods can be applied in 3D lung reconstruction of CT slices, 
there are still two challenging issues in them. First, in most cases, the target contour lines on the existing 
slices are first extracted with some techniques and refined with some edge extraction models such as GVF. 
Then a contour line connection methods [14,16] is adopted to reconstruct organ surface. However, this 
technical pipeline cannot deal with the inconsistently topologies of the upper and lower contours well [18]. 
For example, there are two closed contours in the upper CT slice while there is one contour in the lower 
CT slice. In this case, it is difficulty to determine the correct line connection between the two neighboring 
slices. Second, most of the current methods do not take sparse CT image reconstruction into account. 
Interslice distance refers to the distance between two successive image layers. If the interslice distance is 
small enough (<2 mm), the appearance of the 3D object can be recaptured simply by stacking up the ROIs 
in the correct order. However, if neighboring slices are not closely spaced ( which we call sparse CT images), 
it is difficult to build an accurate 3D object from their 2D serial sections. Accordingly, capturing missing 
contours between contours of neighboring slices is of vital importance to reconstruct the appearance of 3D 
object [9].

	 In this paper, we proposed a novel 3D reconstruction algorithm. A convolutional neural network-
stacked auto-encoder (CNN-SAE) model is used to extract accurate lung regions from CT slices and GVF 
snake model is employed to automatically capture the missing contours with convergences of the variable 
contour lines. Points on the contours are extracted and 3D image reconstruction approach based on the 
point cloud is utilized to reconstruct lungs. Our algorithm achieves lung reconstruction from sparse lung CT 
slices by transforming 2D sampling points into 3D spatial point cloud without considering the connection 
relation of the contour line itself.

	 The remainder of this paper is organized as follows: In Section \ref{sec:lungseg}, we present our 
lung segmentation algorithm and lung reconstruction algorithm, respectively. In Section \ref{sec:result}, we 
provide a set of experimental results and in Section \ref{sec:discussion}, we make a further discussion on the 
capabilities of our reconstruction framework and draw a brief conclusion in Section \ref{sec:conclusion}.

Methods

	 The images used in this paper come from the interstitial lung diseases (ILDs) dataset [19]. It contains 
High-Resolution Computed Tomography (HRCT) image series along with clinical parameters from patients 
with pathologically proven diagnoses of ILDs. The library contains 128 patients affected with one of 13 
histological diagnoses of ILDs, 108 image series with more than 41 liters of annotated lung tissue patterns 
as well as a comprehensive set of 99 clinical parameters related to ILDs. Slice thickness is 1-2 mm, the 
spacing between two neighboring slices is 10-15 mm.

Lung segmentation

	 Accurate lung segmentation can provide more detailed contour information and is the base of 
accurate lung reconstruction. Our lung segmentation algorithm covers two stages: lung extraction and 
contour correction.
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	 The input image is first segmented into a set of superpixels and then they are classified into four 
classes by Random Forest (RF) with multi-scale features of each superpixel captured from a Convolutional 
Neural Network-Sparse Autoencoder (CNN-SAE) model. Segmented lung contours are corrected with a 
corner detection-based technique. The pipeline of lung segmentation is shown in Figure 1.

Figure 1: Lung segmentation. A lung CT image is first segmented into a group of superpixels, and the superpixels are 
classified by random forest with multi-scale features generated by a CNN-SAE model. Then, lung regions are extracted 
and the corresponding contours are further refined by a contour correction approach.

Lung segmentation with random forest based on multi-scale features

	 In lung segmentation, handcrafted features such as intensity, shape or texture cannot make rep-
resentations of high-level problem domain concepts, which results in difficulty of characterizing certain 
classes efficiently [20]. Nevertheless, deep features are expected to be more powerful as they are learned 
from a massive amount of data in a supervised manner and are often more effective than traditional hand-
crafted features [21,22].

	 As we all know, CNN has the ability to represent learning, extracting and filtering input information 
layer by layer. The convolution layer of CNN can be regarded as a feature extractor, which generates local 
deep features of image patches in each layer, and finally combines these features into a global deep feature 
vector. In our model, deep convolutional features are extracted from lung CT images by a pre-trained deep 
network, CNN-SAE. The proposed CNN network is composed of six convolutional layers that have 6, 6 and 
40 filters of size 5 x 5, 5 x 5 and 4 x 4, respectively. Each of the convolutional layers is followed by a max-
pooling layer. The last pooling layer is connected to a fully-connected layer, which in turn, is connected to a 
softmax layer to calculate the output probability.

	 Auto-encoder is a type of feed-forward neural network, under the unsupervised setting, whose out-
put is required to be equal to the input. SAE is a special three-layer neural network with a sparse limitation 
in general SAE and its structure is represented in Figure 2. The feature of SAE is that the node number of 
the input layer (Layer 1), excluding bias node, is the same as that of output layer (Layer 3), while the node 
number of the hidden layer (Layer 2) is less than that of the input layer and output layer nodes. SAE model 
used in our model is to obtain a low-dimensional representation of the original data. In the model, the node 
numbers of the input layer, hidden layer, and output layer are 25, 10 and 25, respectively. The activation 
function used in SAE is sigmoid with learning rate 1. Taking deep features of the first two convolutional lay-
ers as the input of SAE, combing the features extracted from the last convolutional layer of CNN, we obtain 
the multi-scale deep features of the input CT image after 100 iteration calculation.
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	 A superpixel consists of a set of adjacent pixels with similar intensity, shape, texture, and other 
characteristics. It retains complete local information for further image segmentation [23]. In our algorithm, 
an input CT image is first segmented into a set of superpixels, and superpixel features extracted by the 
CNN-SAE model are taken as the input of a random forest classifier. Accordingly, the superpixels are clas-
sified into two classes: pleural tissues and other regions. The background of the CT image is extracted by a 
region growing approach and the superpixels in lung region are extracted by eliminating background using 
a group of morphological operations.

Figure 2: Structure of an SAE.

Contour correction

	 The lung contours segmented with our CNN-SAE model are usually incomplete because of lessons 
such as nodules and pneumonia. We use a contour correction approach based on a corner detection ap-
proach to refine our segmentation. The main steps are shown as:

(1)	 Calculate corners on the lung contours with the Shi-Tomasi approach [24].

(2)	 Adjacent corners are detected with a circle dilatation method [25] and connected with lines.

(3)	 Smooth contours with a morphological closing operation and moving average method.

Lung reconstruction

	 As shown in Figure 3, if the interslice distances between successive slices are big (e.g. 10 mm in ILDs 
dataset), the appearance of the 3D object cannot be recaptured simply by stacking up the contours in the 
correct order (Figure 3d). In order to find the contours of slices locating at the space between two neigh-
boring slices (Figure 3c), we utilize an active contour model, GVF, to automatically capture them.

Figure 3: Lung reconstruction of sparse CT images. Two successive CT images (a) and (b) from a CT scan case 
and their space difference (c), and the lung reconstruction result (d) with all the sparse CT images in the case.
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Point cloud extraction

	 GVF Snake model [13] is derived from the traditional active snake model adding static external force 
field to expand the scope of the force field. The model can converge to concave areas of the object. Assume 
is the edge map of a gray-scale image , and is the gradient field of . iteratively diffuses to edges of the image 
and forms gradient vector flow field for the image. Here we define gradient vector flow field as a vector 
field, and the new external force minimizes the energy function shown in Equation 1.
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	 Where xu , yu , xν  and yν  are the first-order partial derivatives of µ , ν  with respect to x  and y , 
respectively. µ is a adjusting parameter, 2∇  is the Laplace operator.

	 When the image gradient f∇  is relatively small, that is, when the dynamic curve is far from the real 
contours, the image energy is mainly dominated by the first term of Equation 1. On the other hand, when 

f∇  is relatively large, that is, when the dynamic curve is located on the contours or in its vicinity, the image 
energy is mainly dominated by the second term of Equation 1. The GVF field is expressed as Equation 2 
according to Euler equation. The matching between the model and the target contour can be achieved by 
solving a minimum energy function fν = ∇ . To minimize the energy function, the gradient vector flow field 
satisfies the Euler equation expressed in Equation 2: 
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Its iterative equation is
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And the iterative formula of contour convergence is:
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(4)

	 In GVF, ( , )v x y  always points toward the edges with minimum energy. The initial contour moves 
to the real edge under the action of ( , )v x y , and stops when the total energy of the contour reaches the 
minimum value, and the resulted contour is the real contour. The distance, d , at which the initial contour 
converges each time influences the rate of convergence. As shown in Figure 4, the contour in the next slice 
is taken as the initial contour of the current slice in a CT scan case. With the convergence of the initial con-
tour, we obtain the evenly distributed contours, '

sC , between two neighboring slices (Figure 4). The num-
ber (density) of '

sC , nC , is determined by convergence step, d , the smaller d   in GVF algorithm generates 
bigger nC  as shown in Figure 5}. In our method, we set 1d = .
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Figure 4: Capturing contour with GVF snake model. We set initial contours (green lines) in a upper slice using 
contours of its lower slice (a). In gradient vector flow field (b), initial contours convergence and form a set of 
intermediate contours between contours in two two adjacent slices (c).

	 With the points located on contours captured with our GVF model, we obtain the contour point 
cloud from a CT scan case (Figure 6b). Compared with the point cloud extracted from the original lung 
segmentation results (Figure 6a), our method can generate more contour points, which contributes to the 
point cloud reconstruction of lungs. For example, it is easily to calculate point normals according to the lo-
cally fitted surface of the region where the point is located.

 

Figure 5: Different number (density) of nC  with various d s, 2d = (a), 3d =  (b),  5d = (c).

 

Figure 6: Point cloud. From existing sparse contours (a), dense contours (b) can be generated through our method, which is 
helpful for calculating accurate point normals (c).

Floating scale surface reconstruction

	 Compared with millions of sampling points in a general point cloud reconstruction model, there 
are about 40 thousand data points of each lung. Here, we employed Floating Scale Surface Reconstruction 
(FSSR) method for our reconstruction [26].

	 FSSR method can efficiently reconstruct high-quality meshes from acquired sample data. It recon-
structs a real object surface by constructing an implicit function as the sum of compactly supported basis 
functions, and the implicit function has a continuous "floating" scale in space, which makes it a nearly 
parameter-free method. At the same time, it can correctly reconstruct a surface from sparse sample points.
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FSSR covers three parts: building octree, calculating implicit function and extracting isosurface. First, we 
calculate the scale and normal vector of all the input sampling points [27,28]. Then all the sampled points 
are inserted into the octree data structure according to their scales. The eight corners of the octree leaf 
node are called voxels, where the implicit function values are calculated. Finally, the isosurface is extracted 
from the octree by using the variant of the marching cube algorithm [29]. The main steps are shown as fol-
lows:

1. Octree generation

	 Assume that a sample point i  has scale value is  and the radius is 3 is  according to the calculation 
of basic function defined as Eq.(5).
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Let the side length of an space octree node at level xu  is set yu , we impose

lillil SsSSsS 21 <≤⇔<≤ − (6)

	 when a sample point xu  is inserted into an octree node with a side edge length of yu , the edge 
length is at most xν :

ili sSs ≤<2
1 (5)

	 Starting from an empty octree, the first sample point i  is inserted into a newly created root node 
with a central position, ip . and a side edge length of is . We insert the subsequent sampled point according 
to the following steps:

(a) If the sampled point is outside the octree, the octree is iteratively expanded in the direction of the new 
sample until the new sample is inside the octree. Then we insert the sampled point according to (b) or (c).

(b) If the scale of the new sampled point is larger than the side length of the root node, the octree will 
continue to expand to generate a new and larger root node until the side length of the root node meets the 
Equation (6).

(c) If the scale of the new sampled point is smaller than the side length of the root node, the octree will be 
traversed. In this process, new nodes may be generated until the side length of a node satisfies the Equation 
(6).

Once the node location is determined, the sampled point is inserted into the tree.

(2) Implicit function evaluation

	 Suppose there is an input point set with $N$ sampled points, and each of the point contains posi-
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tion ip , normal vector in  and scale is . Variable scale reconstruction establishes a symbolic implicit func-
tion, which is positive or negative in or out of the implicit surface. The implicit function is defined as the 
weighted sum of the base function:

∑
∑=

i i

i ii

xW
xfxw

xF
)(

)()(
)( (6)

	 Where ∑=
i

i xwxW )()(  and w  is weighting function. It is composed of asymmetric components in the 
x   direction, and a rotation invariant component in y - and z - direction.

	 A series of voxels are generated by traversing the eight corners of each leaf node in assisting octree. 
Implicit functions are calculated in these voxel locations, and each voxel is identified by a unique ID to avoid 
the repetitive computation. In order to calculate the function value of voxel x  quickly, an efficient query is 
designed in the octree and only the sampling points that probably affect the x  value is selected: recursively 
query the octree nodes, and check whether they affect the y  value or not. According to Equation 6, the 
maximum scale of sampling points in node N  with side length NS  is 2 NS . If node N  contains sampling points 
affecting x , it needs to meet the following requirements:

N
N SSNcenterx 23

2
3)( ⋅>−− (7)

	 Left hand side of the inequality is the nearest distance from the sampling point in N  node to x , and 
right hand side is the maximum influence distance of the sampling point in N  node. If the inequality holds, 
the node and its children nodes are skipped. Otherwise, check whether all the sampled points in the node 
meet the requirements, ii spx 3<− , which can affect x . Find all sampling points that can affect the value of 
x , and calculate the value of x  function according to Equation 8:

)( iii pxRx −⋅= (8)

	 The rotation matrix )( ii nRR =  transforms voxel x  into the local coordinate system (LCS) of sampled 
point i . LCS takes ip  as its original center and in  is positive x -axis direction.

(3) Extract isosurface

	 Extract isosurface from the implicit function defined by the octree voxels. In general, each cube can 
be processed individually using the marching cubes [29], and the result mesh surface can be guaranteed to 
be watertight. However, because of depth disparity in the octree, and the common surface belonging to dif-
ferent cubes may make different judgments, which will leave cracks in the surface. Therefore, using a vari-
ant of the marching cube algorithm [29] can directly produce a non-cracked and highly adaptive grid from 
the octree hierarchy. After isosurface extraction [30] and color reconstruction, we obtain the reconstructed 
lungs.
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Results

Accurate lung segmentation is helpful for the accurate lung reconstruction. We test the accuracy of our 
lung segmentation algorithm on an experimental data set including healthy (H), Pneumocystis Pneumonia 
(PCP), respiratory bronchiolitis associated ILD (RB\_ILD) and nonspecific interstitial pneumonia (NSIP)CT 
images. Four classical metrics [25], Dice Similarity Coefficient (DSC), Jaccard's similarity index (JSI), over-
segmentation rate (OR), under-segmentation rate (UR) is used for evaluating the performance of our lung 
segmentation algorithm. We show a group of lung segmentation results in Figure 7 and exhibit the corre-
sponding segmentation accuracy in terms of DSC, JSI, OR and UR in Figure 8. It can be seen that the accuracy 
of PCP image segmentation is lower than other types of images due to their inhomogeneous intensities. 
Nevertheless, lung segmentation accuracy on all of the types of images is higher than 90% in terms of DSC 
and JSI, and lower than 0.05 in terms of OR and UR. Our algorithm can generate accurate lung segmenta-
tion, which is helpful for extracting correct point cloud for the lung reconstruction.

Figure 7: Lung segmentation. Lung CT images (a) are segmented into a group of superpixels (b), and the 
final results (c) are obtained with random forest classification and contour correction.

Figure 8: Lung segmentation accuracy with our algorithm in terms of DSC, JSI (a), and OR, UR (b).
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	 With point cloud extracted from lung contours, a set of reconstruction results of lungs using the 
FSSR algorithm. FSSR calculates the scale according to the spacing of sampled points, and the scale of sam-
pling points is estimated by the average distance of k nearest neighbors. The reconstruction results are 
different with different k as shown in Figure 9. Smaller k generates coarse reconstruction results while 
bigger k produces more accurate results. However, some details will be smoothed if k is too big. Here, we 
empirically set k=200.

Figure 9: Lung reconstruction with various scales: k=10 
(a), k=50 (b), k=100 (c) and k=200 (d).

Figure 10: Lung reconstruction. (a) Point cloud. (b) 
Points with normals. (c) Poisson reconstruction result. 
(d) Final reconstruction result.

Figure 11: Branch model reconstruction. The images 
(a)~(c) are three successive images of a lung CT scan case, 
taking the contours of former images as the initial contour 
of GVF Snake model in the current slice, we extracted the 
point cloud (d). The final reconstruction result is shown in 
(e) and (f) with Poisson and FSSR algorithm, respectively.

Conclusion

	 3D lung reconstruction is to reconstruct 3D lung model from 2D medical image sequence, which is 
of great significance to medical anatomy, medical teaching clinical practice and so on. Compared with 2D 
CT images, 3D reconstruction of lungs can provide the observer with more intuitive, comprehensive and 
accurate information of lesions and normal tissues. In this paper, we introduce a novel 3D lung reconstruc-
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tion technique based on point cloud. We first use RF to distinguish accurate lung regions from the sparse 
lung CT images based on multi-scale features extracted with our CNN-SAE model. Then we use GVF Snake 
model to interpolate the missing contours, and obtain 3D point cloud of lung surface according to contour 
coordinates. Finally, we successfully reconstructed lungs with FSSR method. Our algorithm can deal with 
lung reconstruction from sparse lung CT images and can solve one-to-many contour matching problem, 
but for many-to-many contour matching problem, we need to further improve the contour interpolation 
algorithm to get more accurate reconstruction.
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